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Motivation

The LSST active optics system (AOS) uses wavefront information to correct for errors in the
rigid body displacement and rotation of M2 and the camera relative toM1M3 and for bending
deformations of both M2 and M1M3; these degrees of freedom will collectively be referred
to the optical state of the telescope. A look-up table (LUT) will correct for most of the gravity-
induced motion; only the residual due to thermal variations, dome seeing or errors in the
gravity look-up table needs to be corrected by AOS. Wavefront information is available from
four field points and used to correct motion every 30 seconds.

To determine how to adjust the optical state, so that the wavefront error is minimized, we use
the wavefront information to estimate the optical state of the system and derive from there
what are the corrections, in the basis of the degrees of freedom, that need to be applied.

Given that we are able to set the degrees of freedom values, one may wonder why we need
to estimate them from the wavefront sensing if we have control over them. Thermal vari-
ations, gravitational errors, and dome-seeing affect the optical aberrations of the telescope
and, therefore, the optical state. The fact that we express the optical state on the basis of the
degrees of freedom doesn’t mean we are estimating the state of the degrees of freedom at
the actuator-level, which we know exactly, but rather the optical state of the system which is
due to the actuator-level motions and the optical aberration effects.

Preliminaires

The vector of wavefront measurements 𝒚 ∈ ℝ𝑛 and the optical state vector 𝒙 ∈ ℝ𝑚 are related
through the sensitivity matrix A ∈ ℝ𝑛×𝑚 as 𝒚 = A𝒙.

We will consider the vector of wavefront measurements 𝒚 to be a 19-dimensional vector with
Zernike coefficients from 𝑍4 to 𝑍22. However, we could consider the 𝒚 to be the 19-Zernike
vector at different Gaussian quadrature points, in which case 𝒚 ∈ ℝ𝑝×𝑛 where 𝑝 are the number
of quadrature points. If that were the case, then the sensitivity matrix would be A ∈ ℝ𝑝×𝑛×𝑚.
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We could unravel the vectors and end up with an equivalent description to the original one.
Therefore, without loss of generality, wewill keep thedimensions of 𝒚 to be 𝑛 for this summary.

The optical state vector 𝒙 is a 50-dimensional vetor corresponding to the 50 degrees of free-
dom of our system, which include by order, the rigid-body motion hexapod degrees of free-
dom forM2 (𝑑𝑧𝑀2, 𝑑𝑥𝑀2, 𝑑𝑦𝑀2, 𝑅𝑥𝑀2, 𝑅𝑦𝑀2) and for the Camera hexapod (𝑑𝑧𝐶𝑎𝑚, 𝑑𝑥𝐶𝑎𝑚, 𝑑𝑦𝐶𝑎𝑚,
𝑅𝑥𝐶𝑎𝑚, 𝑅𝑦𝐶𝑎𝑚), the 20 bending modes of M1M3, and the 20 bending modes of M2.

We will denote the vector of corrections that we apply to the system as 𝒖 ∈ ℝ𝑛. These correc-
tions are also on the basis of the degrees of freedom.

Finally, we will assume the following description of the optical state at time-step 𝑘 + 1 holds,

𝒙𝑘+1 = 𝒙𝑘 + 𝒖 + 𝜹𝑘 (1)

where 𝜹𝑘 is the average deviation introduced between time-step due to uncontrolled effects.

Optical state estimation

The simplestway to estimate the optical state from thewavefront errormeasurements –which
corresponds to the way we currently do it in ts_ofc– is using the Moore-Penrose pseudoin-
verse (A+), which is derived as follows,

A𝒙 = 𝒚

A⊤A𝒙 = A⊤𝒚

𝒙̂ = (A⊤A)−1A⊤𝒚 = A+𝒚

Notably, the sensitivitymatrix is a highly-degeneratematrix which has a set of singular vectors
with very small singular values. In Figure 1we plot the singular values for the Sensitivitymatrix
calculated on 35 Gaussian Quadrature points in the corner wavefront sensors.

The importance of the degeneracy on our optical feedback control comes into play at multiple
levels. The first one is the pseudo-inverse. In fact, instead of doing this matrix multiplication
above, the pseudo-inverse A+ is computed de facto using the Singular Value Decomposition
(SVD) of A.

𝒙̂ = A+𝒚 = V�−1U⊤𝒚 (2)
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Figure 1: Singular values derived from the original sensitivity matrix at the 35 Gaussian
Quadrature points of the four wavefront sensors.

The singular vectors from the sensitivity matrix, therefore play a crucial role in our state esti-
mate. Let us rewrite the state estimate based on the real optical state 𝒙,

𝒙̂ = A+𝒚 = A+A𝒙 = V�−1U⊤U�V⊤𝒙 = VV⊤𝒙 (3)

Since A is nearly-degenerate, it doesn’t have full column rank, and therefore VV⊤ ≠ 𝕀. In this
case, we can interpret the pseudo-inverse estimate 𝒙̂ as the orthogonal projection of 𝒙 onto
the row space of A.

Noisy measurements

Let us now depart from the ideal world of physics and delve into reality. In this case, the
problem formulation can be rewritten introducing noise to our measurements as,

𝒚𝑛𝑜𝑖𝑠𝑦 = A𝒙 + 𝒘 (4)

The first step is to study what the error of our previous pseudo-inverse estimate will look like,
that is, what is our reconstruction error. The noisy estimate, in this case, would be,

𝒙̂𝑛𝑜𝑖𝑠𝑦 = A+A𝒙 + A+𝒘 (5)
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So the reconstruction error would be,

‖𝒙̂𝑛𝑜𝑖𝑠𝑦 − 𝒙̂‖2
2 = ‖A+𝒘‖2

2 = ‖V�−1U⊤𝒘‖2
2 (6)

Where we used the SVD of A. Now, let us show that for any vector 𝒛 ∈ ℝ𝑛,

‖V𝒛‖2
2 = 𝒛⊤V⊤V𝒛 = 𝒛⊤𝒛 = ‖𝒛‖2

2 (7)

where we used the fact that the right-singular vector matrix derived from SVD is such that,
V⊤V = 𝕀

Now our reconstruction error can be rewritten as,

‖𝒙̂𝑛𝑜𝑖𝑠𝑦 − 𝒙̂‖2
2 = ‖�−1U⊤𝒘‖2

2 (8)

At this point, let us suppose for just a minute that the noise is normalized ‖𝒘‖2
2 = 1. Since U

is orthogonal, we see that,
‖U⊤𝒘‖2

2 ≤ ‖𝒘‖2
2 (9)

To find the maximum reconstruction error, using the above we see that,

max
𝒘∈ℝ𝑚‖�−1U⊤𝒘‖2

2 = max
𝒘∈ℝ𝑚‖�−1𝒘‖2

2 (10)

Finally, we can see that the worst-case error, in this case, will have an entry equal to 1 in the
largest singular value of �−1, and the rest will be zero. In this case, we have that,

max
𝒘∈ℝ𝑚‖�−1U⊤𝒘‖2

2 = max
𝜎𝑖

𝜎−2
𝑖 = 1

𝜎2
𝑚

(11)

where 𝜎2
𝑚 corresponds to the smallest singular value.

If we now remove the assumption of having a normalized error, we can rewrite our recon-
struction error as,

‖𝒙̂𝑛𝑜𝑖𝑠𝑦 − 𝒙̂‖2
2 = ‖�−1U⊤𝒘‖2

2 ≤ 1
𝜎2

𝑚
‖𝒘‖2

2 (12)
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If the smallest singular value is very small, then the reconstruction error can be very bad. We,
therefore, need to truncate the SVD and remove those terms with small singular value. The
python function np.linalg.pinv currently being used does that automatically given a toler-
ance rcond that sets the smallest singular value allowed.

Noise covariance for state estimation

We now want to explore the possibility of using the knowledge of the noise covariance esti-
mate that we can get from real data, to improve our estimate of the state. This differs from
the previous noisymeasurement section in that we use information from the real noise, apart
from removing those degeneratemodes that could impact the state estimate due to the noise.

For this derivation, we will use the Minimum Variance Unbiased Estimator (MVUE), which
for our linear model and assuming Gaussian statistics corresponds to the conditional mean
E[𝑋|𝑌 ]. To derive the expression of this conditional expectation, we will start from the joint
distribution of the optical state (𝒙) and noise (𝒘). Let us denote the state covariance 𝐶𝑜𝑣(𝒙, 𝒙)
with X and the noise covariance 𝐶𝑜𝑣(𝒘, 𝒘) withW.

[
𝒙
𝒘]

∼ 𝒩
([

𝝁𝒙
0 ]

,
[
X 0
0 W])

(13)

whereweused the fact that the noise is independent of the state to determine the off-diagonal
terms.

Now let us find the joint distribution of the optical state (𝒙) and the wavefront measurement
(𝒚).

[
𝒙
𝒚]

∼ 𝒩
([

𝝁𝒙
A𝝁𝒙]

,
[
X XA⊤

AX AXA⊤ + W])
(14)
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Let us work out explicitly how we derived the term 𝐶𝑜𝑣(𝒚, 𝒚),

𝐶𝑜𝑣(𝒚, 𝒚) = 𝐶𝑜𝑣(A𝒙 + 𝒘,A𝒙 + 𝒘)
= 𝐶𝑜𝑣(A𝒙,A𝒙) + 𝐶𝑜𝑣(𝒘, 𝒘) + 𝐶𝑜𝑣(𝒘,A𝒙) + 𝐶𝑜𝑣(A𝒙, 𝒘)
= AXA⊤ + W

(15)

where we used the independence of the optical state and noise, and the standard covariance
property of 𝐶𝑜𝑣(A𝒙,A𝒙) = AXA⊤. The off-diagonal term can be obtained similarly.

Now, the mean of the conditional distribution of two bivariate normal random variables can
be shown to be,

𝐸[𝒙|𝒚] = 𝝁𝒙 + �xy�yy
−1(𝒚 − 𝝁𝒚) (16)

Now, we will assume that the mean of the optical state distribution is zero 𝝁𝒙 = 0. Then,
substituting the covariance from Equation 15, we have,

𝐸[𝒙|𝒚] = XA⊤(A⊤XA + W)−1𝒚 (17)

Overall, our MVUE estimator when we introduce the term of noise is,

𝒙̂ = XA⊤(A⊤XA + W)−1𝒚 (18)

We can check dimensions now, A ∶ (𝑛, 𝑚), W ∶ (𝑚, 𝑚), 𝒚 ∶ (𝑛, 1), and X ∶ (𝑛, 𝑛). Note that this
estimate has been proposed but is not implemented at all in ts_ofc.

Optimal integral controller (OIC)

Wederive the corrections to be applied byminimizing a particular cost function 𝐽 . In our case,
optimizing image quality, i.e. minimizing the variance of FWHM is an obvious goal. Further-
more, we want to limit large actuator swings to avoid damage to the glass, as well as to ensure
smooth transitions between iterations. This additional goal can be achieved by incorporating
the variance of the actuator commands (𝒖) in the cost function with some weight 𝜌. The ma-
trix H defines the distribution of control authority among various actuator groups (rigid body
and shape actuators) such that 1 𝜇𝑚 or 1 arcsec rigid body displacement corresponds to 1 N
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actuator force.

The cost function that we minimize to derive the corrections are,

𝐽 = 𝒚⊤
𝑘+1Q𝒚𝑘+1 + 𝜌𝒖⊤H𝒖 (19)

note that this 𝐽 is not related to the 𝐽 introduced in the previous section, it is just a convention
to denote a cost function. Here we introduce the subindex 𝑘 to denote the timestep. We will
want to derive the corrections at timestep 𝑘 + 1 based on the previous state 𝑘.

Matrix definitions

Let us first refresh the definitions of the penalty matrix H and the image quality matrix Q.
Based on the explanations of the first paragraph, this matrices are defined as,

H =

⎛
⎜
⎜
⎜
⎜
⎝

ℎ1 0 ⋯ 0
0 ℎ2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ ℎ50

⎞
⎟
⎟
⎟
⎟
⎠

(20)

where each diagonal term is the standard deviation of the actuator change due to that de-
gree of freedom from the influence matrix times how many microns of piston does 1N force
corresponds to.

Similarly, for the image quality matrix, we have,

Q = (
2𝜋
𝜆 )

2
diag(𝛼)2 (21)

where 𝛼 is the alpha value of the normalized point source sensitivity (PSSN) in the basis of
Zernikes (𝑍4-𝑍22), and 𝜆 is the wavelength of the corresponding filter.

Derivation of corrections

Now, that we have set these definitions, we want to derive what is the best corrections to
apply at timestep 𝑘. To derive them, we will minimize the cost function 𝐽 , meaning that we
want to minimize both the penalty term, which corresponds to penalizing large swings in our
degrees of freedom, and the first term, which corresponds tominimizing the wavefront error.
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To minimize the cost function with respect to 𝒖, we need to rewrite the cost function in terms
of 𝑥𝑘, we will leverage our initial definition 𝒚𝑘 = A𝒙𝑘

𝐽 = 𝒙⊤
𝑘+1A

⊤QA𝒙𝑘+1 + 𝜌𝒖⊤H𝒖 (22)

Now recall the basic assumption of our system in equation 1. We will assume for now that
there is no uncontrolled change between timesteps, so we will have,

𝒙𝑘+1 = 𝒙𝑘 + 𝒖 (23)

With this assumption, the cost function becomes,

𝐽 = (𝒙𝑘 + 𝒖)⊤A⊤QA(𝒙𝑘 + 𝒖) + 𝜌𝒖⊤H𝒖 (24)

Now that we have the cost function written in terms of the corrections 𝒖, let us derive the
optimal set of corrections by minimizing it,

𝜕𝐽
𝜕𝒖 = 2𝜌H𝒖 + 2A⊤QA𝒖 + 2A⊤QA𝒙𝑘

= 2(A⊤QA + 𝜌H)𝒖 + 2A⊤QA𝒙𝑘

(25)

Equating the above to zero, we find that the corrections to be applied are,

𝒖 = −(A⊤QA + 𝜌H)−1A⊤QA𝒙𝑘 = −F𝒙𝑘 (26)

We normally introduce a gain term 𝛼 that determines the speed of convergence. With that we
can derive an expression for the state of our system at timestep 𝑘 + 1,

𝒙𝑘+1 = 𝒙𝑘 − 𝛼F𝒙𝑘 + 𝜹𝑘 (27)
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